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Abstract
We study the equilibrium configurations of a nematic liquid crystal confined
between two parallel plates, when an electric field is applied. We take into
account the mutual interaction of the field and the material. We also analyse
the effects of two possibly different weak anchoring potentials at the plates. We
use asymptotic methods to study in detail two different regimes of the applied
voltage. The former concerns applied voltages close to the Freedericksz and
the saturation critical thresholds; the latter is the case of high applied potentials.
We discuss the new effects that arise with respect to the partial electric coupling
and the strong anchoring cases.

PACS numbers: 61.30.−v, 61.30.Hn, 64.70.Md
Mathematics Subject Classification: 76A15, 82B27, 82B26

1. Introduction

A nematic liquid crystal [1] is a system of rod-like molecules whose mass centres do not
exhibit any positional order. The interaction between neighbouring molecules tries to make
them parallel to one another, and induces a partial ordering at mesoscopic scales. This effect
competes against the distortions induced by external mechanical actions, electric or magnetic
fields and the disordering thermal effects.

The classical elastic continuum theory is based on the pioneering works of Oseen [2],
Zocher [3] and Frank [4]. A rigorous mathematical description of this theory can be found
in [5]. The average alignment of the molecules is represented by a unit vector n, called the
director, where n is physically equivalent to −n. In Frank’s theory, a local stored energy
function depending on n and its gradient is assumed. The director n adjusts throughout the
sample in order to minimize that energy according to the boundary conditions.

Surface effects of liquid crystals are important for both device applications and basic
understanding of physical phenomena [6]. The optical properties of devices containing nematic
liquid crystals can be modified by altering the director field. In usual electro-optic devices
the liquid crystal is confined between two parallel plates and its molecular orientation can be
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driven through suitable actions at the boundaries. In practice it is possible to fix the molecules
of liquid crystals at the boundary; delimiting surfaces can be treated in such a way that leads
to a specific orientation of the molecules at the boundary. In some mathematical problems,
the energy needed to destroy this anchoring, known as the energy anchoring, is assumed to
be infinity. This assumption is called strong anchoring and consists in fixing a priori the
value of n on the boundary. The boundary condition where the molecules are orthogonal to
the delimiting surfaces is called homeotropic; on the other hand, when the optical axes are
forced to be parallel to the boundary the condition is called planar. In some cases the effect of
external actions succeeds in breaking the anchoring and the strong anchoring is not a correct
assumption.

Rapini and Papoular [7] introduced first the weak anchoring. They proposed a formula
for the anchoring energy. So, in the absence of external actions, the preferred direction of
the molecules on the boundary minimizes the anchoring energy. The preferred direction is
called the easy axis. In the presence of external actions, the direction of the molecules on
the boundary is an unknown problem. Rapini–Papoular’s formula has been confirmed in the
experiment of Naermura [8].

The optical response of a cell containing a liquid crystal may be electrically driven by
applying a voltage difference between the delimiting plates. In the presence of an electrostatic
field the liquid crystal, considered as a perfect insulator, tends to align its molecules along or
normal to the direction of the field, depending on the dielectric properties of the molecules.
So, when a nematic liquid crystal is subject to an electric field, the free energy functional
acquires a term which expresses the energy of interaction with the applied field. In addition,
the distortion of the nematic director may affect the local electric field, so that the electric field
itself obeys an equation fully coupled with the director equilibrium equation.

We consider a nematic liquid crystal sample which is initially in a planar homogeneous
alignment. As it is discovered by Freedericksz [9], and well reported in [1, 5], at a critical
value of the strength of the applied magnetic or electric field, a static distortion occurs.
This phenomenon is called the Freedericksz transition and occurs with either strong or weak
anchoring boundary conditions [5]. The post-critical response of simple cells containing
nematic liquid crystals with strong anchoring boundary condition has been widely investigated
in the literature [10–14].

The Freedericksz transition induced in samples of nematic with weak anchoring at the
boundary, briefly called the weak Freedericksz transition, has been approached in [15] and
analysed in detail, in the case of planar deformations, in [5]. The weak Freedericksz transition
is similar to the classical one, until the external field becomes so strong that the preferred
configuration becomes homogeneously homeotropic. When one considers an applied magnetic
field, rather than an electric one, the field is not affected by nematic distortions. By analogy,
we can consider the limit where the applied electric field is uncoupled from the other variables.
We will refer to this assumption as the magnetic approximation [14].

In the present study we focus our attention on the non-trivial solutions of electrically driven
Freedericksz transition cells. We investigate the effects due to the presence of a finite anchoring
energy together with the complete electromechanical coupling. Our results generalize those
obtained in [14] for strong anchoring to the case of weak anchoring and those reported in
section 5.6 of [5] for partial field-matter coupling to the fully coupled case. We carried
out some peculiar results for this specific problem. If we consider strong applied electric
fields, we show that the anchoring strengths must scale in a suitable manner in order to avoid a
homogeneous alignment of the molecules in the field direction. Whenever we assume different
finite anchoring energies on the boundaries, we deduce that both the transition thresholds are
decreasing monotonic functions of difference between the anchoring strengths.
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This work is organized as follows. In section 2, we derive the governing equations for
the specific problem considered in the rest of the paper: the plane deformation induced by
an electrostatic field in a cell of nematic sandwiched between two parallel infinite plates. In
sections 3 and 4, we assume equal anchoring energies at both plates, and we study the solution
in two limiting cases: applied fields close to the Freedericksz and the saturation thresholds
(section 3) and strong applied electric fields (section 4). In both these limits, we determine the
director field and the electrostatic potential throughout the sample, with the aid of asymptotic
methods. In section 5 we extend the results obtained in sections 3 and 4 by allowing the
anchoring energies at the boundaries to be different. Some conclusions are pointed out in
section 6.

2. Equilibrium equations

We consider a nematic liquid crystal confined between two parallel plates placed at Z = −d/2
and Z = d/2, subject to weak anchoring at the external surfaces. The easy axis is assumed to
lie in the boundary planes, and will be labelled as X-axis. So, in the absence of any external
action, the nematic is in homogeneous planar alignment. An electrical potential Vapp is applied
giving rise to an electrostatic field inside the nematic.

We assume plane deformations of the director field. In that case, the following
representation of the director is possible n = (cos θ, 0, sin θ). The angle θ is determined
by the director n and the X-axis and will be a function of Z coordinate only. Within these
hypotheses, the Frank distortion energy per area unit [1, 4, 5] takes the form

WF = 1

2

∫ d/2

−d/2
(k1 cos2 θ + k3 sin2 θ)

(
dθ

dZ

)2

dZ. (1)

In (1), k1 and k3 are two positive constants called the splay and the bend moduli, respectively.
The contributions due to the twist and saddle-splay distortions vanish in our geometry (see,
for example, [5]).

According to [1, 10], the interaction director field is described by the energy

WI = −1

2

∫ d/2

−d/2
D · E dZ, (2)

where D = ε⊥E + εa(E · n)n is the dielectric displacement. The parameters ε‖ and ε⊥ are
the static dielectric constant measured along or normal to the molecular axis, respectively; the
quantity εa = ε‖ − ε⊥ measures the dielectric anisotropy. By introducing the electrostatic
potential �, which also depends on the Z-coordinate only, we obtain

WI = −1

2

∫ d/2

−d/2
(ε⊥ + εa sin2 θ)

(
d�

dZ

)2

dZ. (3)

It is easy to check that, whenever εa is positive, the molecules prefer to align their axes along
the electric field direction. For any future development we assume εa > 0 in order to create
competition between the electric field and the surface anchoring.

The anchoring at the boundaries is described by the Rapini–Papoular energy:

WA = w±

2
sin2 θ at Z = ±d

2
, (4)

where both anchoring strengths w+ and w− are positive. With this choice of w±, the anchoring
energy is minimized when n is parallel to the plates. It favours the planar easy axes.

The total energy per area unit is then

W = WF + WI + WA. (5)
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In order to obtain the Euler–Lagrange equations, we vary the total energy W . The first variation
of W is defined as

δW =
[

∂

∂λ
W(θ + λδθ, θ ′ + λδθ ′, � ′ + λδ� ′)

]
λ=0

, (6)

where (·)′ denotes the derivative with respect to Z. By using (6) and applying the divergence
theorem we obtain

δW = −
∫ d/2

−d/2

{[
2(k1 cos2 θ + k3 sin2 θ)

d2θ

dZ2
+ (k3 − k1) sin 2θ

(
dθ

dZ

)2

+ εa sin 2θ

(
d�

dZ

)2
]

δθ − d

dZ

[
(ε‖ sin2 θ + ε⊥ cos2 θ)

d�

dZ

]
δ�

}
dZ

+

{[
2(k1 cos2 θ + k3 sin2 θ)

dθ

dZ
+ w+ sin 2θ

]
δθ

}
Z=d/2

+

{[
−2(k1 cos2 θ + k3 sin2 θ)

dθ

dZ
+ w− sin 2θ

]
δθ

}
Z=−d/2

. (7)

Note that δ� vanishes on the boundary since the potential is imposed on it.
At the equilibrium δW = 0. Taking into account the arbitrariness of δθ and δ� we obtain

the bulk equilibrium equations

2(k1 cos2 θ + k3 sin2 θ)
d2θ

dZ2
+ (k3 − k1) sin 2θ

(
dθ

dZ

)2

+ εa sin 2θ

(
d�

dZ

)2

= 0, (8)

and
d

dZ

[
(ε‖ sin2 θ + ε⊥ cos2 θ)

d�

dZ

]
= 0, (9)

and the boundary conditions

2(k1 cos2 θ + k3 sin2 θ)
dθ

dZ
± w± sin 2θ = 0, at Z = ±d

2
, (10)

and

� = ±Vapp

2
at Z = ±d

2
. (11)

As is to be expected, the bulk equations (8) and (9) are identical to equations (3.1) and
(3.2) of [14]. Also the electrical boundary conditions (11) are unchanged. Nevertheless, the
introduction of the anchoring energy WA modifies the boundary conditions on the director
(compare equation (10) with equation (3.3)I in [14]). In fact, on the boundaries the director n
will adjust itself in order to satisfy (10), while the case planar strong anchoring, analysed in
[14], fixes a priori its value to be zero.

2.1. Dimensionless equations

To better discuss our results, we now write the equilibrium equations in dimensionless form.
We introduce the scaled variables

z = Z

d
, ψ = �

Vapp
, (12)

and define the dimensionless scalars

α = k3

k1
− 1, η = 1 − ε⊥

ε‖
, V =

√
εa

k1
Vapp, β± = dw±

k1
, (13)
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which represent the dimensionless nematic anisotropy, dielectric anisotropy, applied voltage
and anchoring strengths, respectively. The quantity ξ = k1/w, called the extrapolation
length, is the measure for the relevance of the competing elastic distortion versus the anchoring-
induced order. The ratio between the sample thickness d and the extrapolation length measures
the robustness of the anchoring. We may recover the strong planar anchoring by performing
the β± → ∞ limit in equation (10), while free boundary conditions are obtained in the
β± → 0 limit.

Our problem is now restricted to the interval z ∈ [−1/2, 1/2]. We introduce the following
notation: plus and/or minus superscripts denote function values in z = 1/2 and/or z = −1/2,
respectively. The bulk equations (8) and (9) now become

2(1 + α sin2 θ)θzz + α sin 2θθ2
z + sin 2θV 2ψ2

z = 0, (14)

and

[(1 − η cos2 θ)ψz]z = 0. (15)

The boundary conditions (10) and (11) read

2(1 + α sin2 θ±)θ±
z ± β± sin 2θ± = 0, and ψ± = ±1/2. (16)

Self et al [14] first performed a systematic study of the solutions of (14)–(16) considering
strong planar anchoring boundary conditions. They take into account the various physically
relevant distinguished limiting cases of the parameters α, η and V , and derived approximate
solutions using asymptotic methods. In the low-field and small dielectric anisotropy regime
they recovered the results of [10] and [12]. In the high-field they approached the solution
through boundary layer methods. The excellent agreement of the so-obtained solutions with
the numerical ones shows the usefulness of the adopted methods. We perform a similar
analysis to understand the effect of weak anchoring in the same limiting cases. Nevertheless,
a first difference between our problem and that analysed in [14] arises from the presence
of two further additional parameters, the dimensionless anchoring strengths β±. Since we
have assumed w± to be positive, we have β± ∈ [0,∞). The delimiting values of this range
correspond to free and strong planar anchoring boundary conditions, respectively.

The dimensionless equilibrium equations (14) and (15), together with the boundary
conditions (16), admit the trivial solutions

{θ = 0, ψ = z}, {θ = π/2, ψ = z}. (17)

Note that in the presence of strong planar anchoring boundary conditions, the second solution
must be discarded since it does not satisfy the boundary conditions. In addition, the existence
of the two trivial solutions (17) yields the existence of two critical bifurcation values, rather
than the only one that can be found in the strong anchoring limit.

We first consider the case in which the anchoring strengths on both plates are equal:
β+ = β− = β. We will treat the case of different anchoring strengths in section 5. Close
to the Freedericksz transitions, the results derived in section 5.6 of [5] still hold. There are
two critical values of V , namely VF and VS , such that for any V ∈ (VF , VS) the equilibrium
equations admit non-trivial solutions with lower energy than the trivial ones. These critical
values obey the equations

VF

β
= cot

VF

2
, (18)

and
√

1 + α
VS

β
= coth

(
VS

2
√

1 + α

)
, (19)
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Figure 1. Plots of the transition critical thresholds as functions of inverse of the anchoring strength.
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Figure 2. Schematic representation of weak Freedericksz transition: (a) homogeneous planar
alignment; (b) distorted configuration; (c) homogeneous homeotropic alignment.

respectively. Note that VF � VS for all β. In the limit of infinitely strong anchoring energies,
VF tends to π , in agreement with the classical Freedericksz threshold, and VS tends to infinity.
For very weak anchoring energies, both VF and VS tend to zero. We will refer to VF and VS

as the Freedericksz and the saturation thresholds, respectively. Figure 1 shows the plot of the
Freedericksz thresholds as functions of the inverse of the dimensionless anchoring strength.

Let us now see what is the physical meaning of VF and VS . When a potential difference
is established between the plates, the nematic molecules initially in a planar homogeneous
configuration (figure 2(a)) tend to rotate their axes towards the Z direction. On the other
hand, the molecules prefer to maintain their axes parallel to one another and, possibly, in the
direction of the easy axis. At VF < V < VS the electric torque prevails on the nematic actions.
Nevertheless, the anchoring strength is strong enough to recall the director of the molecules
at the boundary, in the direction of the easy axes. The compromise is a non-homogeneous
configuration of the director field where |θ | reaches its maximum values in the middle of the
cell and the minimum on the boundary (figure 2(b)). At V > VS the electric torque is strong
enough to destroy the anchoring. Then the molecules prefer to orient themselves parallel to
each other in the direction of the field, in a homogeneous homeotropic texture (figure 2(c)).
In the case of strong anchoring the electric energy required to destroy the anchoring is infinite
and therefore VS diverges in the limit β → ∞. By contrast, when β → 0 the molecules
at the boundary are freely orientable and an infinitesimal electric field is able to reorient
the molecules through the sample in a homogeneous homeotropic alignment. Thus, both
thresholds become infinitesimal and the distorted zone vanishes.
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Note that, taking into account the β definition and equations (18) and (19), it follows by
that keeping unaltered the constitutive parameters of the nematic and the anchoring strengths,
the critical thresholds increase with the sample thickness. Therefore, in very thin cells the
Freedericksz and the saturation transitions are achieved for very low applied voltages.

3. Solutions close to the critical voltages

In this section we determine the shape of the solutions of the equilibrium equations close to the
bifurcation points. Here the difficulty arising from the complete electromechanical coupling
combines with the difficulties arising from the implicit equations (18) and (19). However,
the deduced results can both be compared with the numerical results and analysed in special
cases, where one recovers the already known results.

3.1. Applied voltages just above VF

Let us consider a reduced applied voltage V slightly higher than VF :

V = VF (1 + δ2), δ � 1. (20)

Consistently, we assume that the unknown fields are slightly perturbed with respect to the
trivial solution {θ = 0, ψ = z}

θ(z) = δθ1(z) + δ2θ2(z) + δ3θ3(z) + o(δ3) (21)

ψ(z) = z + δψ1(z) + δ2ψ2(z) + δ3ψ3(z) + o(δ3). (22)

By replacing (21) and (22) into (14)–(16), we obtain at O(δ) the dimensionless linearized bulk
equilibrium equations

θ1zz + V 2θ1 = 0, ψ1zz = 0, (23)

and the dimensionless linearized boundary conditions

θ±
1z ± βθ±

1 = 0, ψ±
1 = 0. (24)

By solving the linearized equations, one finds an infinity of solutions: one with homogeneous
planar alignment, which corresponds to the solution θ1 = 0 and a double infinity with distorted
nematic director where

θ1 = A cos(VF z), (25)

with VF satisfying equation (18). In fact, from the periodicity of the trigonometric functions,
equation (18) admits a double infinity of solutions for any fixed β. These solutions are
symmetrical with respect to VF = 0, since positive and negative applied voltages lead to the
same distorted configuration.

By pushing to higher orders the perturbation algorithm we find

θ(z) = δA cos(VF z) + o(δ2), (26)

ψ(z) = z + δ2

[
−A2η


sin(2VF z) + Bz

]
+ o(δ2). (27)

As is to be expected, θ and ψ are respectively an even and an odd function in z ∈ [−1/2, 1/2].
The determination of the constants A and B involves the first nonlinearity of the problem,
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which occurs at O(δ3). So, the equation for θ3 is

θ3zz + V 2
F θ3 = A3V 2

F cos(VF z)

[(
α +

η

1 − η

)
cos(2VF z)

+
2

3
cos2(VF z) +

2ηβ

(η − 1)
(
V 2

F + β2
)]

, (28)

which admits the general solution

θ3 = A3 cos(VF z) + C3 sin(VF z) +
A3

8(η − 1)
(
V 2

F + β2
)[

−1

2

(
(η − 1)α − 2

3
η − 1

2

)
× (

V 2
F + β2

)
cos(3VF z)+(cos(VF z) + 2 sin(VF z)VF z)

(
V 2

F + (β + 4η)β
)]

,

(29)

where  = 1 + α(1 − η) and β and VF are related through equation (18).
By substituting (21) into (16) and retaining just the O(δ3) terms, we obtain the boundary

conditions

θ±
3z ± βθ±

3 = ±A3 cos2 VF

2

[
αVF sin

VF

2
+

2

3
β cos

VF

2

]
. (30)

By replacing (30) into (29) we find the first-order amplitude expression

A = ±2

√
(1 − η)

(
V 2

F + β2
)(

V 2
F + 2β + β2

)(
β4 + 2β3 + 2β2V 2

F − 2βV 2
F + V 4

F

)
 + 4ηβ

(
V 2

F − β2 − 2β
) (31)

and consequently

B = ηβA2

(1 − η)
(
V 2

F + β2
) . (32)

In our approximation δA represents the value of θ(z) in the middle of the cell, which could be
positive or negative depending on whether the molecules rotate in anticlockwise or clockwise
direction, respectively.

The numerical counterpart of the problem is performed as follows. For all given δ

and β, we solve the complete nonlinear problem assuming an adimensional applied voltage
V = VF (1 + δ2). VF is obtained by solving numerically equation (18). To estimate the
difference between the numerical and the approximate solutions we define their relative
mismatch

Err =
∫ 1/2
−1/2 |θappr − θnum|2 dz∫ 1/2

−1/2 |θnum|2 dz
. (33)

Figure 3 (left) shows the plot of Err as a function of δ for different values of β. The difference
between the numerical and approximate solutions tends to zero with δ.

For high but not infinite anchoring strength, (31) and (32) become

A = ±2

√
1 − η



(
1 +

2η

β

)
+ O

(
1

β2

)
, (34)

B = 4η

β
+ O

(
1

β2

)
. (35)

Note that the factor under square root in (34) is always positive. In fact, η ∈ (0, 1] since
εa > 0. On the other hand, α � −1 by definition and, therefore,  is positive.
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Figure 3. Left: plot of the relative mismatch between the numerical and the approximate solutions
close to the Freedericksz transition, for several values of dimensionless anchoring strength β. The
function Err tends to zero with δ and therefore the approximate solution tends to the numerical
one for infinitesimal δ. Right: plots of θ profile close to the Freedericksz threshold, for several
values of β and δ = 0.2. The curve θ(z) moves upwards as β decreases and therefore θ+ and A

are decreasing functions of β. Both plots are obtained by setting η = 0.2 and α = 0.

3.2. Applied voltages just below VS

For a given β, a critical voltage VS given by (19) exists below which non-trivial solutions are
possible. Let us suppose now that the applied voltage can be written as

V = VS(1 − δ2), (36)

where δ is infinitesimal. Consequently, we assume slight perturbed solutions with respect to
the trivial solution {θ = π/2, ψ = z}:

θ(z) = π/2 + δθ̄1(z) + δ2θ̄2(z) + δ3θ̄3(z) + o(δ3), (37)

ψ(z) = z + δψ̄1(z) + δ2ψ̄2(z) + δ2ψ̄3(z) + o(δ3). (38)

By inserting (37) and (38) into (14)–(16) and retaining just the O(δ) terms, we arrive at the
linear equilibrium equations and boundary conditions:

ιθ̄1zz − V 2θ̄1 = 0, ψ̄1zz = 0, (39)

ιθ̄±
1z ∓ βθ̄±

1 = 0, ψ̄±
1 = 0, (40)

where ι = 1 + α. Equation (39)1 together with the boundary condition (40)1 gives a
double infinity of solutions. The trivial solution θ̄1 = 0 corresponds to the homogeneously
homeotropic configuration. The non-trivial solutions are of the form

θ̄1 = Ā cosh

(
VSz√

ι

)
, (41)

where VS is given through (19). In addition, for all fixed β the lowest (in modulus) root VS of
equation (19) determines the saturation threshold.

As before, the linearized problem is partially coupled. The correction of the electrostatic
potential occurs at O(δ2) and the determination of Ā requires the θ̄3 equilibrium equation.
According to standard techniques of perturbation theory, we push our algorithm up to O(δ3)
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Figure 4. Left: plot of the relative mismatch between the numerical and the approximate solutions
close to the saturation transition, for different values of dimensionless anchoring strength β.
Err(δ) tends to zero with δ and therefore the approximate solution tends to the numerical one for
infinitesimal δ. Right: plots of θ profile near the saturation threshold, for several β and δ = 0.2.
The curves θ(z) move downwards as the value of β decreases and therefore θ+ and Ā are an
increasing and a decreasing function of β, respectively. Both plots are obtained by setting η = 0.2
and α = 0.

obtaining

θ(z) = π

2
+ δĀ cosh

(
VSz√

ι

)
+ o(δ2), (42)

ψ(z) = z + δ2

[
− Ā2η

√
ι

4VS

sinh

(
2VSz√

ι

)
+ B̄z

]
+ o(δ2), (43)

with

Ā = ±2

√
ι
(
ιV 2

S + 2ιβ − β2
)(

β2 − ιV 2
S

)(
β4 + ι2V 4

S

)
(ιη + 1) + 2βι

(
β2 + ιV 2

S

)
(ιη − 1) − 2ιβ2

(
ιηV 2

S + 4ι2η + V 2
S

) , (44)

and

B̄ = ηβιĀ2

V 2
S ι − β2

, (45)

where β can be expressed as a function of VS through (19). By equation (44) it follows that θ

can assume equivalently values slightly less or higher than π/2.
As figure 4 shows, the approximate solution tends to the numerical one for infinitesimal δ.

3.3. Discussion

The analysis performed in the two previous subsections yields the solution of our problem
in a neighbourhood of the Freedericksz critical fields. Our analysis goes beyond the linear
approximation allowing us to determine completely the main order correction to each trivial
solution. By contrast, the results reported in section 5.6 of [5] are limited to the linear
analysis and, therefore, give just the form of the O(δ) correction, without determination of its
amplitude. In addition, the linear analysis alone is not able to establish the influence of the
complete electromechanical coupling. In fact, the correction to the electric potential is O(δ2)

and the effect of the coupling is contained in the expressions of A and Ā, which are determined
at O(δ3). The magnetic approximation can be obtained by setting η = 0. In this limit both B
and B̄ vanish, and therefore the correction to the electrostatic potential vanishes.
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Deuling [10], Schiller [12] and Self et al [14] considered the fully coupled electro-
mechanical problem with planar strong anchoring boundary conditions. In this case the only
finite Freedericksz threshold is equal to π and, therefore, the search of solutions close to
the bifurcation point becomes quite simplified with respect to ours. The values of A and B
reduce to the first term only in the expressions (34) and (35), respectively. We have recovered
the classical results (compare our results with equations (4.1) and (4.2) of [14]) in the limit
β → ∞.

As for the solution close to the saturation bifurcation, in the limit of high anchoring
strength, it follows from (19) that β ≈ √

ιVS . Consequently, Ā = o(β−3/2) and B̄ ≈ −√
ι/β.

On the boundary θ+ ≈ π/2±2διβ−3/2. We stress the fact that at first we fix VS , or equivalently
β, and then we consider infinitesimal perturbation of the applied voltage. Only in this order
of limits we can obtain a regular solution in a neighbourhood of the critical potential VS . By
contrast, if we fix δ and consider β tending to infinity, non-regular solutions are to be expected.

Finally, we observe (figure 3 left) that the convergence close to the Freedericksz transition
is monotonic with β, while this feature is not verified close to the saturation transition (figure 4
left). However, the complete analytic behaviour of Err(δ) can be determined by only pushing
the solutions asymptotic development to higher orders.

4. High applied voltages

In this section, we consider the case where a high voltage is applied. In other words, we
assume that the dimensionless applied voltage V is much larger than the other dimensionless
parameters.

The case with strong planar anchoring boundary conditions and high applied voltages
has been carefully analysed in [14]. The authors highlight three different regions for the θ

profile. A thick one extends in most of the interior of the cell where θ changes smoothly. In
two thin symmetrical regions adjacent to the plates, θ changes rapidly. This behaviour can
be qualitatively explained as follows. Inside the cell and away from the plates, the anchoring
effects are negligible. The electric torque prevails and the molecules align to the field direction.
Though the applied voltage field is strong, V remains finite, while the anchoring strength is
assumed to be infinity. Therefore, the molecules at the boundary are forced to remain parallel
to the plates. In the thin regions θ should vary from 0 to π/2. Since the dimensionless applied
potential is quite large, the gradient of θ becomes very large and, consequently, all terms in
the director equation are of the same order of magnitude.

Our aim is to extend the above results to the case of weak anchoring boundary
conditions. In this case the behaviour is very similar to the case of strong anchoring boundary
conditions, provided that the reduced applied voltage remains under the saturation threshold
VS . Otherwise, the anchoring breaks and all molecules align their axes in the field direction.
As in [14], we introduce the parameter ε = 1/V , with ε � 1. By equation (19), it follows that
β must be rescaled as β = β̄/εγ , where β̄ is O(1) and γ � 1; otherwise we reach the trivial
solution {θ = π,ψ = z}. Note that the dimensionless anchoring strength is an increasing
function of γ .

We limit our analysis to small dielectric anisotropies η = εη̄, where η̄ is O(1), and one
constant approximation α = 0. The case of small nematic anisotropy will be discussed in
subsection 4.4. In the hypothesis of small dielectric anisotropies, one constant approximation
and high applied voltage, the bulk equilibrium equations take the form

2ε2θzz + sin 2θψ2
z = 0, (46)

[(1 − εη̄ cos2 θ)ψz]z = 0, (47)
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while the boundary conditions become

2εγ θ
±
z ± β̄ sin 2θ

± = 0, (48)

ψ
± = ±1/2. (49)

In the singular limit ε → 0 we expect a zone far from the boundaries where the solution changes
smoothly and two narrow regions close to the boundaries where the solution changes rapidly.
These thin regions are called boundary layers [16]. Usually one tries to obtain the solution
by solving exactly a sequence of approximate problems. One starts by treating the problem as
a regular perturbation by producing what is known as the outer approximation. The problem
in the narrows regions, called the inner approximation, is studied by introducing suitable
stretched coordinates. The inner and the outer expansions must overlap in an intermediate
region. Forcing the two expansions to coincide in this region determines the coefficients of
the expansions. This process is called asymptotic matching. As a final result one obtains
a composite solution by adding the inner and the outer, and then subtracting their common
expression in the overlap region. However, a detailed and exhaustive treatment of this technique
can be found in [16].

4.1. Outer approximation

In this region z = O(1) and the solution admits a regular expansion in ε:

θ̂ = θ̂0 +
∞∑
i=1

εi θ̂i , ψ̂ = ψ̂0 +
∞∑
i=1

εiψ̂i . (50)

If we replace this expansion in equations (46) and (47), we find that any constant integer
multiple of π/2 satisfies the outer equation. We focus our attention on the solution of the type

θ̂0 = π

2
, θ̂i = 0 i � 1, (51)

ψ̂i = aiz + bi, i � 0. (52)

The other physically relevant solution is θ̂0 = 0, which does not produce boundary layers.
The constants ai, bi will be determined by matching the inner and the outer approximations.

4.2. Inner approximations

Following [14], in order to make the second derivative term O(1) we use the re-scaling
z = −1/2 + εζ in the left narrow region and z = 1/2 − εζ in the right one. The so-rescaled
bulk equilibrium equations are identical in both narrow regions, so we limit our analysis just
to the left thin zone. The solution in the right one can be obtained by symmetry. By rescaling
equations (46) and (47) we obtain

2ε2θ̃ ζ ζ + sin 2θ̃ ψ̃2
ζ = 0 and [(1 − εη̄ cos2 θ̃ )ψ̃ζ ]ζ = 0, (53)

where θ̃ and ψ̃ are functions of the stretched variable ζ . The boundary conditions (48) and
(49) become

2εγ−1θ̃−
ζ − β̄ sin 2θ̃− = 0 and ψ̃− = −1/2, (54)

where the minus superscript denotes now the value of the function at ζ = 0. We expand θ̃ and
ψ̃ as

θ̃ = θ̃0 +
∞∑
i=1

εi θ̃ i and ψ̃ = ψ̃0 +
∞∑
i=1

εiψ̃ i . (55)
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If we insert (55) into (53)II and (54)II , we obtain at O(ε) the solutions

ψ̃0 = A0ζ + B0, ψ̃1 = A1ζ + B1, (56)

and the boundary conditions ψ̃−
0 = −1/2 and ψ̃−

1 = 0 which imply B0 = − 1
2 , B1 = 0. Also,

the O(1) matching of inner and outer solution gives A0 = 0.
If we push the expansion to O(ε2), equation (53)I gives

2θ̃0ζ ζ + A2
1 sin 2θ̃0 = 0; (57)

the integration of this equation, taking into account the matching with the outer solution which
implies θ̃0(∞) = π/2 and θ̃0ζ (∞) = 0+, gives

θ̃0 = 2 arctan
C0 eA1ζ − 1

C0 eA1ζ + 1
, (58)

where C0 will be determined below with the aid of (54)I . We remark that the matching
condition θ̃0(∞) = π/2 with θ̃0ζ (∞) = 0− is equally possible. The corresponding solution
is the mirror-like one of (58) with respect to the ζ -axis. We also note that

C0 = 1 + tan θ̃−
0
2

1 − tan θ̃−
0
2

∈ [1,∞). (59)

The case C0 = 1 corresponds to the strong anchoring boundary conditions, while in the limit
C0 → ∞ the boundary layers vanish. Thus, the singular solution approaches a regular one by
increasing C0.

The O(ε2) equation for ψ̃ reads

ψ̃2ζ = A2 + η̄A1 cos2 θ̃0. (60)

If we substitute (58) into the latter equation, perform the integration and also impose
ψ̃2(0) = 0, we obtain

ψ̃2(ζ ) = A2ζ +
4η̄C2

0 tanh(A1ζ )(
C2

0 + 1
)[(

C2
0 − 1

)
tanh(A1ζ ) + C2

0 + 1
] . (61)

In a similar way, we can obtain the right inner approximation. The asymptotic matching
between inner and outer solutions determines all the coefficients involved in the expansions.
Therefore, as inner solutions we obtain

ψ̃ l(ζ ) ≈ −1

2
+ εζ + ε2 4η̄C2

0 tanh ζ(
C2

0 + 1
)[(

C2
0 − 1

)
tanh ζ + C2

0 + 1
] ≈ −ψ̃r (ζ ), (62)

while for the outer expansion we have

ψ̂ ≈ z − ε2 2η̄

C2
0 + 1

z. (63)

The equation for θ̃1 is

θ̃1ζ ζ + θ̃1 cos 2θ̃0 = 2η̄θ̃0ζ ζ cos2 θ̃0, (64)

which, when integrated with the condition θ̃1(∞) = 0, leads to

θ̃1(ζ ) = − 2C0η̄ eζ(
C2

0 e2ζ + 1
)2 +

C1 eζ

C2
0 e2ζ + 1

. (65)
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The constant C1 will be determined below by using the anchoring condition on θ̃1. Finally the
expression of θ̃ in the left and right narrow regions is

θ̃ l(ζ ) ≈ 2 arctan
C0 eA1ζ − 1

C0 eA1ζ + 1
− ε

2C0η̄ eζ(
C2

0 e2ζ + 1
)2 + ε

C1 eζ

C2
0 e2ζ + 1

≈ θ̃ r (ζ ). (66)

4.3. Composite solution

The composite approximation of the equilibrium configuration is obtained by adding the inner
and the outer, and then subtracting the common expression in the overlap regions. This rule
when applied to (62), (63), (51) and (66) gives respectively the composite expressions

ψc(z) ≈ z − ε2 2η̄

C2
0 + 1

z + ε2 4η̄C2
0

C2
0 + 1

(
tanh 1+2z

2ε(
C2

0 − 1
)

tanh 1+2z
2ε

+ C2
0 + 1

− tanh 1−2z
2ε(

C2
0 − 1

)
tanh 1−2z

2ε
+ C2

0 + 1

)
, (67)

θc(z) ≈ −π

2
+ 2 arctan

C0 e
1+2z

2ε − 1

C0 e
1+2z

2ε + 1
+ 2 arctan

C0 e
1−2z

2ε − 1

C0 e
1−2z

2ε + 1

− ε
2C0η̄ e

1+2z
2ε(

C2
0 e

1+2z
ε + 1

)2 + ε
C1 e

1+2z
2ε

C2
0 e

1+2z
ε + 1

− ε
2C0η̄ e

1−2z
2ε(

C2
0 e

1−2z
ε + 1

)2 + ε
C1 e

1−2z
2ε

C2
0 e

1−2z
ε + 1

. (68)

The coefficients C0 and C1 can be determined by imposing the weak anchoring condition.
Nevertheless, these latter depend on the particular value of γ � 1. Here, we focus on the
cases γ = 1 and γ = 2. In the first case, by substituting the expansion (55) into the boundary
conditions (54)I one obtains by working at O(ε)

2θ̃−
0z − β̄ sin 2θ̃−

0 = 0; (69)

θ̃−
1z − β̄θ̃−

1 cos 2θ̃−
0 = 0. (70)

By inserting equation (58) (with A1 = 1) in (69), we arrive at

C0 =
√

β̄ + 1

β̄ − 1
. (71)

Note that, β̄ must be greater than 1. Indeed, by (19) (with α = 0) the existence of non-trivial
solutions requires β � VS tanh(VS/2); furthermore the reduced applied potential V must be
less than VS and, consequently, β � VS tanh(VS/2) > V tanh(V/2). Now, since β = β̄/ε and
V = 1/ε, for an infinitesimal ε it follows that β̄ > 1.

If we replace (58) and (64) into (70) we arrive at

C1 =
√

β̄ + 1

β̄ − 1
η̄. (72)

In the case γ = 2, θ̃−
0 is fixed to be zero, which implies C0 = 1. Consequently, after

some algebra, equation (58) becomes identical to (4.20) in [14]. Thus, at O(1), and if β

increases sufficiently rapidly with ε, the solution does not distinguish between weak and
strong anchoring. Nevertheless, some difference occurs at the successive orders. In particular



Weak anchoring effects in electrically driven Freedericksz transitions 25

when γ = 2, we obtain

C1 = η̄ +
2

β̄
, (73)

which depends on the anchoring strength. Note that, with respect to the previous case, now β̄

may assume any positive values.

4.4. Small nematic anisotropies

In the previous subsections, our results have been derived in the case of vanishing nematic
anisotropy, α = 0. To make a direct comparison with the results of the literature we need to
extend our results to the case of small nematic anisotropies α = εᾱ, where ᾱ is O(1). For
shortness, we here report only the expression of the composite solutions.

The solution ψc is still of the form (67). This means that ψc is not affected by the presence
of a small nematic anisotropy. Indeed, the composite solution ψc depends on the anchoring
strength through the constant C0 which is given by (71) in the case γ = 1 or C0 = 1 if γ > 1.
However, in the case of perfect strong anchoring, C0 = 1 and equation (67) reduces to the
formula (4.26) of [14], provided by redefining z as z + 1/2.

The composite solution θc
ᾱ becomes

θc
ᾱ = θc + ϑc, (74)

where θc is given by (66) and

ϑc ≈ −ε
C0 e

1+2z
2ε

(
C2

0 e
1+2z

ε

(
1 + 1+2z

ε

)
+ 1+2z

ε
+ 5

)
ᾱ

2
(
C2

0 e
1+2z

ε + 1
)2 − ε

C0 e
1−2z

2ε

(
C2

0 e
1−2z

ε

(
1 + 1−2z

ε

)
+ 1−2z

ε
+ 5

)
ᾱ

2
(
C2

0 e
1−2z

ε + 1
)2 .

(75)

The coefficient C1 of the θc
ᾱ expression becomes

C1 = 4 − 3β̄ − 2β̄2 + 3β̄3

2β̄(1 + β̄)(β̄ − 1)3/2
ᾱ +

√
β̄ + 1

β̄ − 1
η̄ if γ = 1, (76)

C1 = 3

2
ᾱ + η̄ +

2

β̄
if γ = 2. (77)

In the case of strong anchoring we have C1 = 3ᾱ/2+η̄. After some tedious but straightforward
algebra we recover equation (4.27) of [14], providing to change z in z + 1/2.

4.5. Discussion

The analysis in the strong electric field regime has been performed by taking into account just
small dielectric anisotropies and one constant approximation (or small nematic anisotropy).
In fact, our study has been intentionally addressed to point out some differences that arise if
we introduce a finite anchoring energy rather than an infinite one. Thus, we have retained
the minimum number of parameters in order to simplify our discussion. However, the study
could be extended to several regimes of dielectric and nematic anisotropies pursuing similar
developments adopted in section 4.3 of [14]. Nevertheless, the study for small anisotropy
regimes could have an experimental counterpart for certain types of nematic liquid crystals
(see, for example, [11]). In addition, large nematic anisotropies may give rise to out of plane
distortions.
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Figure 5. Plots of numerical and composite solutions with V = 3π , β = 10 (left) and β = 100
(right). Both plots have been obtained in one constant approximation hypothesis and dielectric
anisotropy η = 0.2.

Note that γ is not an artificial parameter introduced to make the scaling work. Indeed,
since β̄ is O(1) we can deduce γ � ln β/ ln V . The so-obtained γ is related to the order beyond
which the anchoring effects manifest themselves in the approximate equilibrium solution. If
γ = 1 then the weak anchoring takes place at O(1) approximation. If γ � 2, weak and strong
anchoring solutions coincide up to O(εγ−2) and the weak anchoring effects occur beyond
O(εγ−2). Figure 5 shows the plots of θ through the sample, given by numerical simulation
and the composite solutions. In the left plot the numerical simulation is obtained by setting
β = 10 and V = 3π , and since these two parameters are both sufficiently larger than 1, we
can appreciate the boundary layers. The ratio between β and V yields an estimate of the γ

value. In this case, since β and V are of the same order of magnitude, we may refer to γ � 1.
Thus, the composite solution with γ = 1 is practically indistinguishable from the numerical
one, as is well proved by figure 5. By contrast, analytical solution with much larger γ is quite
different from the corresponding numerical solution. For example, if we consider β = 100
and V = 3π (right plot of figure 5) then γ � 2 is expected. In this case the γ = 1 composite
solution is still indistinguishable from the numerical one. In addition, the γ = 2 composite
solution is very close to the numerical solution and both are very similar to the solution with
strong anchoring boundary conditions.

It is possible to show, by performing the derivative of (68), that the electric field inside
the cell shows a quite similar behaviour to the θ profile: the boundary layers are more or less
important depending on the anchoring strength.

We also remark that within the magnetic approximation limit, η̄ = 0. Thus, as expected,
by (68) it follows ψc = z. The density of charge on the boundary is not affected by the
distortion and, coherently, it is not affected by the anchoring energy.

Finally note that, in the regime of high applied fields the perfectly strong anchoring is
obtained in the β/V → ∞ limit.

5. Different anchoring strengths

In this section, we briefly discuss some effects that are derived by considering two different
anchoring energies at the boundaries. In practice, this condition can be accomplished, for
example, by applying a different type of surfactant for each delimiting surface.

At each plate, the easy axis is planar. If we use the results derived in section 2, we can
first analyse the influence of the two different anchoring strengths on the critical thresholds
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and study the solution for applied fields reaching the critical values. Then, we point out the
results that concern high applied voltages.

5.1. Critical fields

The field (17) are still solutions of the equilibrium equations. We can apply the usual
perturbation algorithm to calculate the critical fields and the form of the solutions close
to them. We expand θ as in (21) and we replace (21) in (14)–(16). At O(δ) we obtain the
linearized dimensionless bulk equilibrium equations (23) with the boundary conditions

θ±
1z ± β±θ±

1 = 0, ψ±
1 = 0, (78)

which admit the non-trivial solution

θ1 = A1 cos(VF z) + A2 sin(VF z). (79)

ψ1 = 0, (80)

where VF satisfies the equation(
V 2

F − β−β+) sin VF − VF (β− + β+) cos VF = 0. (81)

The constants A1 and A2 are now different in the general case. Therefore, due to the difference
between the anchoring strengths, the solutions lose their symmetry with respect to z = 0. By
imposing the boundary conditions on the linearized equations one can express, for example,
A1 as a function of A2. Nevertheless, as in section 3, the solution remains undetermined at
the first order; the determination of A2 involves the order O(δ3).

To study the threshold behaviour, we introduce βM and �β defined as

βM = β+ + β−

2
, �β = β+ − β−

2
. (82)

Then, equation (81) becomes[
V 2

F − βM
2 + (�β)2

]
sin VF − 2βMVF cos VF = 0. (83)

Without loss of generality, we may assume β− � β+. It follows that 0 � �β � βM , since
both dimensionless anchoring strengths are positive. Then, �β = 0 corresponds to the case
treated in previous sections, while �β = βM corresponds to the situation with free boundary
conditions at z = −1/2.

For all positive, fixed βM, VF (�β) defined by (82) is a decreasing monotonic function in
[0, βM ] (see figure 4, left). The maximum value is given by equation (18), while the minimum
value satisfies

VF

β+
= cot VF , (84)

which occurs when free orientations of the director at one of the plates are considered.
In a similar way, we can determine the saturation threshold. By expanding θ as in (37)

and working at O(δ) we obtain the linear solutions

θ̄1 = Ā1 cosh
VSz√

ι
+ Ā2 sinh

VSz√
ι
, (85)

where the critical threshold VS obeys the following equation:[
ιV 2

S + β2
M − (�β)2

]
sinh

VS√
ι
− 2βM

√
ιVS cosh

VS√
ι

= 0. (86)
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Figure 6. Plots of the Freedericksz threshold VF (left) and saturation threshold VS (right) as a
function of the inverse of the anchoring strength difference �β for various values of βM . In both
plots the curves move upwards as the value of βM increases.

Just as VF , for all positive, fixed βM, VS(�β) is a decreasing monotonic function in [0, βM ]
(see figure 6, right). The maximum value satisfies equation (19), while the minimum value
obeys

VS

β+
= 1√

ι
coth

VS√
ι
. (87)

Plots of VF (left) and VS (right) as a function of the inverse of the anchoring strength difference
�β for different values of βM are shown in figure 6. In both plots the curves move upwards as
the mean anchoring strength increases. In the plots of VF , in each curve the minimum satisfies
equation (84). In the β → ∞ limit, the curve of VF consists of two linear parts: a first one,
almost vertical, between π/2 and π , grazing the �β = 0 axis, and a second horizontal one,
which approaches VF = π . In particular, if 1/�β is infinitesimal, the critical value tends to
π/2, which is the Freedericksz threshold of a sample with strong planar anchoring boundary
conditions on one plate and freely orientable molecules on the other one. By contrast, if �β

is infinitesimal we recover the classical Freedericksz threshold VF = π .
On the other hand, VS exhibits radically different properties with respect to VF . In the

βM → ∞ limit the solution of (87) gives VS → ∞. This means that, it is sufficient to have
just strong anchoring condition on one plate, to avoid the saturation transition. Nevertheless,
we could have reached the same conclusion by observing that the trivial solution (17)2 cannot
hold when either β+ or β− goes to infinity.

In both plots, the maximum of each curve is reached at �β = βM , which corresponds to
the case with the same anchoring energy at both plates. In agreement with equations (18) and
(19), the critical fields are increasing functions of the anchoring strength.

5.2. High applied voltages

We finally analyse the case of small dielectric anisotropies and one constant approximation
with a high applied voltage. With respect to the case treated in section 4, a loss of symmetry
is expected in the composite solution. To obtain the composite solutions we can again apply
similar arguments pursued in section 4. We set V = 1/ε and consider ε → 0; we define
β̄± = β±/εγ . The bulk equilibrium equations (46) and (47) and the boundary conditions (54)
do not change, while the boundary conditions (54) become

2εγ−1θ̃−
ζ ± β̄± sin 2θ̃− = 0. (88)
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Thus, the results obtained in section 4 can be adapted to make the constants of the solution
compatible with the boundary condition (88). For shortness, we just focus on some relevant
results. When the asymptotic matching is completed, the solutions of both left and right inner
problems become

ψ̃ l ≈ −1

2
+ εζ + ε2

4η̄C2
l0

tanh ζ(
C2

l0
+ 1

)[(
C2

l0
− 1

)
tanh ζ + C2

l0
+ 1

] , (89)

θ̃ l ≈ 2 arctan
Cl0 eζ − 1

Cl0 eζ + 1
− ε

2Cl0 η̄ eζ(
C2

l0
e2ζ + 1

)2 + ε
Cl1 eζ

C2
l0

e2ζ + 1
, (90)

ψ̃r ≈ 1

2
− εζ − ε2 4η̄C2

r0
tanh ζ(

C2
r0

+ 1
)[(

C2
r0

− 1
)

tanh ζ + C2
r0

+ 1
] , (91)

θ̃ r ≈ 2 arctan
Cr0 eζ − 1

Cr0 eζ + 1
− ε

2Cr0 η̄ eζ(
C2

r0
e2ζ + 1

)2 + ε
Cr1 eζ

C2
r0

e2ζ + 1
, (92)

where the constants with subscript l depend on β− and those with subscript r depend on β+.
The outer solution reads

ψ̂ ≈ z +
ε2(1 − 2z)

C2
l0

+ 1
− ε2(1 + 2z)

C2
r0

+ 1
, θ̂ ≈ π

2
. (93)

Consequently, the composite solutions are

ψc(z) ≈ z − ε2(1 − 2z)

C2
l0

+ 1
+

ε2(1 + 2z)

C2
r0

+ 1
+

(
tanh 1+2z

2ε(
C2

l0
− 1

)
tanh 1+2z

2ε
+ C2

l0
+ 1

− tanh 1−2z
2ε(

C2
r0

− 1
)

tanh 1−2z
2ε

+ C2
r0

+ 1

)
, (94)

θc(z) ≈ −π

2
+ 2 arctan

Cl0 e
1+2z

2ε − 1

Cl0 e
1+2z

2ε + 1
+ 2 arctan

Cr0 e
1−2z

2ε − 1

Cr0 e
1−2z

2ε + 1

− ε
2Cl0 η̄e

1+2z
2ε(

C2
l0

e
1+2z

ε + 1
)2 + ε

Cl1 e
1+2z

2ε

C2
l0

e
1+2z

ε + 1
− ε

2Cr0 η̄ e
1−2z

2ε(
C2

r0
e

1−2z
ε + 1

)2 + ε
Cr1 e

1−2z
2ε

C2
r0

e
1−2z

ε + 1
. (95)

The undetermined constants can be deduced by requiring that the weak boundary condition is
satisfied. If the reduced anchoring strengths scale with γ = 1 we obtain

Cl0 =
√

β̄− + 1

β̄−1
, Cr0 =

√
β̄+ + 1

β̄+ − 1
, (96)

Cl1 =
√

β̄− + 1

β̄−1
η̄, Cr1 =

√
β̄+ + 1

β̄+ − 1
η̄. (97)

If β− = β+ = β, it is easy to verify that Cl0 = Cr0 and Cl1 = Cr1 . Then, the composite
solutions (94) and (95) take the form (67) and (68), respectively. We also remark that if γ > 1,
we have that θc is an even function at O(1); the loss of symmetry occurs at higher orders.
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6. Concluding remarks

We have analysed plane deformations induced by an electrostatic field on a simple nematic cell,
when finite anchoring energies at the boundaries are taken into account. We have deduced
the approximate solutions close to the transition thresholds, through a regular perturbation
method. We have also investigated the regime of high electric field obtaining solutions of
boundary layer type. The effects of two different anchoring energies at the plates on the critical
fields and on the form of solutions have also been analysed.

All analytical approximate results agree with the numerical solutions of the complete
nonlinear problem. Also, within the strong anchoring limit we recover some known results
[12, 14].

Future developments can be pursued in several ways. Certain type of nematic liquid
crystals, such as PAA or MBBA, exhibit negative dielectric anisotropies. Therefore, their
molecules tend to avoid the alignment with the electric field. One may analyse the plane
distortions induced by an electric field on a simple cell of nematic liquid crystals with negative
dielectric anisotropy and weak anchoring at the boundary which favour homeotropic boundary
conditions.

However, a more exhaustive study should take into account the extension to spatial
deformations. This extension will involve further terms in the energy functional: the twist
energy in the bulk and the saddle-splay energy on the boundary [17]. Furthermore, one may
also take into account different forms of anchoring energy with respect to the Rapini–Papoular
formula.

Further developments could be done within the Landau–de Gennes theory. In this
direction, the mutual interaction between the electric field and the order tensor Q for a
simple cell of nematic with strong planar boundary conditions is taken into account in [18].
Interesting results concerning the weak anchoring for confined nematics subjected to magnetic
fields are reported in [19, 20].
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